翻訳と辞書
Words near each other
・ Brauer
・ Brauer algebra
・ Brauer College
・ Brauer group
・ Brauer Museum of Art
・ Brauer tree
・ Brauer's burrowing skink
・ Brauer's theorem
・ Brauer's theorem on forms
・ Brauer's theorem on induced characters
・ Brauer's three main theorems
・ Brauerei Ottakringer
・ Brauerei Paderborner
・ Braueriana
・ Brauer–Fowler theorem
Brauer–Nesbitt theorem
・ Brauer–Siegel theorem
・ Brauer–Suzuki theorem
・ Brauer–Suzuki–Wall theorem
・ Brauer–Wall group
・ Braughing
・ Braughing Friars
・ Braughing Roman Town
・ Braughing Rural District
・ Braugold
・ Braula
・ Braulidae
・ Braulio
・ Braulio Alonso
・ Braulio Alonso High School


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Brauer–Nesbitt theorem : ウィキペディア英語版
Brauer–Nesbitt theorem
In mathematics, the Brauer–Nesbitt theorem can refer to several different theorems proved by Richard Brauer and Cecil J. Nesbitt in the representation theory of finite groups.
In modular representation theory,
the Brauer–Nesbitt theorem on blocks of defect zero states that a character whose order is divisible by the highest power of a prime ''p'' dividing the order of a finite group remains irreducible when reduced mod ''p'' and vanishes on all elements whose order is divisible by ''p''. Moreover it belongs to a block of defect zero. A block of defect zero contains only one ordinary character and only one modular character.
Another version states that if ''k'' is a field of characteristic zero, ''A'' is a ''k''-algebra, ''V'', ''W'' are semisimple ''A''-modules which are finite dimensional over ''k'', and Tr''V'' = Tr''W'' as elements of Homk(''A'',k), then ''V'' and ''W'' are isomorphic as ''A''-modules.
==References==

*Curtis, Reiner, ''Representation theory of finite groups and associative algebras'', Wiley 1962.
*Brauer, R.; Nesbitt, C. ''On the modular characters of groups.'' Ann. of Math. (2) 42, (1941). 556-590.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Brauer–Nesbitt theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.